THE EVOLUTION OF A SCALABLE DEPARTMENTAL REAL-

TIME CLINICAL INFORMATION SYSTEM
Andrew Galewsky, BS, Daniel Galewsky, MS, Perry Statham, Charles B. Owen, MD
Clinical Resource Systems, Inc., Austin, TX

Abstract

On-line Clinical Information Systems have to be
both very responsive and capable of accessing
large volumes of historic data. The EmStat
Emergency Department Clinical Information
System has evolved through several approaches
to meeting these needs, including effective use of
client/server technology, and optimizing all
available machine resources. Currently the
system is quite successful in this regard but the
evolution continues.

A paradox in designing an on-line clinical
information system is that not only do the users
want the system to be very responsive, they want
access to the volumes of historic data generated.
The EmStat Emergency Department Information
Systems has used several approaches since it first
went on-line in 1986.

First we would like to present a little background
on the system in general. It is a client/server

system with the services residing on a UNIX:

system called the host. The graphical user
interface resides on PC based workstations called

CareStat. The services on the host include the
database, text formatting, printing and
communications.

The original design goal for the system was to
maximize the use of limited hardware resources
to try to optimize for speed through careful
software design rather then relying on hardware.
This includes extensive caching on both the host
and workstation sides, careful tuning of the
database queries and a simple yet robust network
protocol based on UDP (user datagram protocol)
packets. As hardware prices have fallen,
allowing us to use more powerful machines these
optimizations continue to add to the overall
speed and scalability of the system. The system
has so far scaled up to quite a large size for
departmental systems, with the largest site
running over 70 workstations and storing data for
over 100,000 patient visits a year. This site
wants to keep at least 5 years of information on-

0195-4210/95/$5.00 © 1995 AMIA, Inc.

752

line and accessible for both research and past
medical history.

The host for the first EmStat system was one of
the first 386 motherboards running SCO XENIX
(at the time) and an 80 Mb hard drive. The
database software was a version of DB-Vista
from the Raima Corporation. At that time the
clinical workstations were color serial terminals
or small combination touch-screen
terminal/telephones and what where called PDS's
(Personal Data Stations). These PDS’s were
small keypad/bar-code devices that were linked
back to the host using RS-422 multidrop
protocol. It was during the implementation of
this configuration of the system that the problems
of scalability were first encountered. We first
designed the system to use a separate process for
each terminal and PDS. As the system got out of
the prototype stage it became obvious that the
host resources were being consumed to great
extent just trying to poll the devices (about 10 at
the time), leaving little left over to do the other
computing chores. Part of the difficulties were
exacerbated by the fact that SCO XENIX had no
mechanism to multiplex many inputs into one
message stream. We decided that the next
iteration of the system would be designed to
allow one blocking input to relieve the polling
burden on the CPU.

Shortly after the deployment of this system we
began exploring the use of Microsoft Windows
2.0 for the graphic front end of the system.
While the prototype revealed the benefits in
relieving processing from the host computer, it
also revealed the major shortcomings of
Windows 2.0, especially as implemented for the
286 PC. It was at this stage we began to fully
exploit the use of touch-screens as the primary
data-entry mechanism. It had become obvious
that requiring the clinicians to type data or even
to use keyboards was not a viable option for the
high level of compliance we expected. It seemed
that the amount of training required for a
keyboard based system was going to be excessive
for the high turnover observed in the ED

(Emergency Department) staff. The touch-screen
seemed to alleviate the problem. Everyone, it
seemed, could be quickly taught how to touch a
computer.

The database structure at this point in the
development also began to reveal certain
shortcomings.

The database was laid out in a real-time and
archive set of schema. This would allow for the
rapid response of the real-time minute to minute
operation of the department and after the patient
was discharged the data was moved to an archive
portion of the database. While this provided for
a high efficiency for the real-time portion of the
system, it caused many headaches in creating
reports. Many reports would be run while
patients were currently in the department and
spanning over into the archive portion of the
database. Therefore every query had to take this
into consideration causing the queries to become
quite convoluted to ensure that patients from
both portions of the database were correctly
accounted for.

In addition the early versions of DB-Vista had
only a network type of database and no SQL
(Structured Query Language) based query
language. It had no concept of UNION ALL or
facilities for automatic replication of data. In
addition the record structures had to be compiled
into the programs, making it difficult to add
columns to database records without recompiling
all the programs. We also discovered that many
of the recovery techniques for abnormal
termination of the programs relied on reloading
the database from the backup tapes. This became
increasingly annoying as the database grew in
size.

As prices dropped on 386 hardware we began
using Prime 386/XL UNIX computers for the
host. These providled a more traditional
implementation of UNIX including a working
implementation of the TCP/IP protocol suite,
something that was seriously lacking in the
version of SCO that we were using. This,
coupled with the decision to utilize 286 based
PC’s as workstations, allowed us to radically
rethink the design of the system.

As stated before the initial experiments with
Windows 2.0 left a lot to be desired. We chose

753

Digitalk Smalltalk as the graphic front end for
the system. It's strengths at the time included the
fact that it provided amazing performance on the
286 PC’s running plain MSDOS. Smalltalk also
allowed for rapid development in an interactive
visual environment that is only beginning to be
equaled by products such as Visual Basic and the
like.

Next we evaluated the various database vendors
and chose Oracle, mostly for it’s ability to run on
the widest variety of platforms. They also
seemed to tell the fewest untruths of all the
vendors. The particular version of Oracle which
we began development with was release 5.0.
While it lacked certain features that later would
become desirable, it made up for this in
robustness and the ability to recover from some
fairly spectacular disasters.

Oracle and Smalltalk thus form the basis of the
current system. The Clinical Workstations
communicate to the host using the UDP portion
of the TCP/IP suite. By using this connectionless
method of communications we maintain the
precept of one blocking input stream into a single
reader process. By using UDP we also make the
interaction between the host and workstation
essentially stateless. This allows us to bring
either side (host or workstation) up or down with
minimal effect on the other. This is a desirable
trait in an environment such as the ED where
many people use the system to make short
discrete transactions. We also have to face the
fact that the PCs are essentially unreliable in the
sense that they are subject to the vagaries of both
the hostile environment and personnel unfamiliar
with computers. In addition, we recognized that
the entire system would be left unadministered
by the hospital computer services department.
With this in mind we tried to make the system
run as if it would be left alone in a closet (which
indeed several of them are).

This connectionless, stateless communication
method also allows the system to be highly
scaleable, another desirable trait. As more
workstations are added, very little overhead is
added since many workstations are in a quiescent
state, running only an idle mode "chart rack"
representation of the department.

The use of this simple transmission method has
allowed us to implement a simple packet-based

message protocol with a very low processing
overhead for both the host and workstation.

The design of the processes on the host evolved
to also contribute to the efficiency of the system.
Indeed the original design, as discussed earlier,
was for the system to run on a small 386 host. By
dividing the processes into functional units and
extensively utilizing UNIX message queues for
inter-process communication, we are able to
maximize the number of transactions handled by
the system. Indeed the system consistently
handles seven to eight hundred interactions per
hour. For example, we handle all
communications to the workstations with two
processes, a reader deamon called EMREADD
and a writer process called EMWRITED.

EMREADD receives a packet from a workstation
and pauses only long enough to determine the

— LISTD -

I FLOWD —

EMREADD (H—of L1l EMWRITED

STATUSD —

AGENTD

Figure 1 Process Diagram

packet type. These classified packets are then
rapidly posted to the appropriate message queue
for processing. READD can then block on the
input socket and wait for the next packet. While
it is in this blocked state it consumes very little in
the way of resources, unlike the polling methods
used in previous implementations.

All the other deamons can then block on their
input queues and wait for something to do.

Such tasks include list requests for fill in the
blank forms sent to a list processor called
LISTD. Requests for the chart-rack
(departmental status) are sent to the status

754

caching process called STATUSD. Requests for
specific patient chart information are sent to the
flow caching process called FLOWD. All
requests to write data to the database are handled
through a central broker process called the
AGENTD.

An additional benefit to this usage of functional
processes is that we have been able to carefully
consider and eliminate extremely troublesome
race conditions and deadlocks caused by
uncontrolled access to the database. Since all
queries are processed by the host instead of the
workstations, a minimal amount of network
traffic is generated and each query can be
completely optimized for speed.

After each request has been handled by the
appropriate deamon, it is packetized and placed
into the message queue for EMWRITED. A
header tells EMWRITED whether this packet is
destined for a single workstation or if it is to be a
multicast to many different stations interested in
this particular transaction. The writer is then
responsible for handling the transmission and
confirming receipt of the packets.

The database has evolved back to the concept of
having both a real-time and archive portion. Up
to this point Oracle has proven able to manage
the real-time and historic data in one set of
tables. However as the number of observations
in a single system approach the tens of millions,
there is a noticeable lag in the amount of time
required to bring up current information. If a
query degenerated into a sub-optimal form and
caused a full table scan to be performed, then it
could take ten or fifteen minutes for the query to
return. This would certainly degrade the
performance of a system where actions are
expected to occur in the sub-second time frame.

We were able to break the database back up due
to some advances in Oracle’s technology. These
advances include the UNION ALL construct.
UNION ALL allows a query to return all of the
rows from multiple tables in a form that
resembles a single virtual table. Another
function provided is the ability to attach triggers
to individual database row actions. Not only can
we now manage the data more efficiently by
selectively and efficiently replicating it between
tables, but we can provide some unique high-

availability functions to our users at little or no
cost to them.

In summary, the EmStat Emergency Department
Clinical Information System has evolved through
a series of designs and implementations, each
one necessitated by observed practical and
organizational difficulties. The current system,
while not perfect, is a dramatic improvement
over the prototype first conceived in 1986. As in
any dynamic system the next stage of evolution is
already underway.

References

Galewsky Andrew, Hargrove, James, Owen,
Charles B., MD, The EmStat System Design,
Clinical Resource Systems, Inc., unpublished,
1986.

755

Stevens, W. Richard, UNIX Network
Programming, Prentice Hall, Englewood Cliffs,
NJ, 1990.

Rochkind, Marc J., Advanced UNIX
Programming, Prentice Hall, Englewood Cliffs,
NJ, 1985.

Tannenbaum, Andrew S., Operating Systems:
Design and Implementation, Prentice Hall,
Englewood Cliffs, NJ, 1987.

Papadimitrou, Christos, The Theory of Database
Concurrency Control, Computer Science Press,
Rockville, MD, 1986.

Oracle Corporation, Oracle7 Server Concepts
Manual, Oracle Corp., Redwood City, CA.,
1992.

